Disconnected Path With One Flip
// https://leetcode.com/problems/disconnect-path-in-a-binary-matrix-by-at-most-one-flip/description/
/*
You are given a 0-indexed m x n binary matrix grid. You can move from a cell (row, col) to any of the cells (row + 1, col) or (row, col + 1) that has the value 1.
The matrix is disconnected if there is no path from (0, 0) to (m - 1, n - 1).
You can flip the value of at most one (possibly none) cell. You cannot flip the cells (0, 0) and (m - 1, n - 1).
Return true if it is possible to make the matrix disconnect or false otherwise.
Note that flipping a cell changes its value from 0 to 1 or from 1 to 0.
Input: grid = [[1,1,1],[1,0,0],[1,1,1]]
111
111
111
Output: true
Explanation: We can change the cell shown in the diagram above.
There is no path from (0, 0) to (2, 2) in the resulting grid.
Input: grid = [[1,1,1],[1,0,1],[1,1,1]]
Output: false
Explanation: It is not possible to change at most one cell such that there is not path from (0, 0) to (2, 2).
*/
#include <vector>
#include <string>
#include <cassert>
#include <iostream>
using namespace std;
void dfs(vector<vector<int>>& grid, int x, int y, bool &canReachEnd) {
if (canReachEnd) {
return;
}
int m = grid.size();
int n = grid[0].size();
if (x == m-1 && y == n-1) {
canReachEnd = true;
return;
}
if (x >= m || y >= n || grid[x][y] == 0) return;
dfs(grid, x + 1, y, canReachEnd);
if (canReachEnd) {
grid[x][y] = 0;
return;
}
dfs(grid, x, y + 1, canReachEnd);
if (canReachEnd) grid[x][y] = 0;
return;
}
void debug(vector<vector<int>>& grid) {
int m = grid.size();
int n = grid[0].size();
for (int i = 0; i < m; i++) {
for (int j = 0; j < n; j++) {
cout << grid[i][j] << " ";
}
cout << endl;
}
}
// Time: O(m+n), Space: O(m+n)
bool isPossibleToCutPath(vector<vector<int>>& grid) {
bool canReachEnd = false;
dfs(grid, 0, 0, canReachEnd);
if (!canReachEnd) return true;
canReachEnd = false;
grid[0][0] = 1;
dfs(grid, 0, 0, canReachEnd);
return !canReachEnd;
}
// Time: O(m*n), Space: O(m*n)
bool isPossibleToCutPathDP(vector<vector<int>>& grid) {
int m = grid.size();
int n = grid[0].size();
vector<vector<int>> dp(m, vector<int>(n, 0));
dp[0][0] = 1;
for (int i = 0; i < m; i++) {
for (int j = 0; j < n; j++) {
if (i == 0 && j == 0) continue;
if (grid[i][j] == 0) continue;
int path1 = (i-1 >= 0) ? dp[i-1][j] : 0;
int path2 = (j-1 >= 0) ? dp[i][j-1] : 0;
dp[i][j] = path1 + path2;
}
}
vector<vector<int>> dp2(m, vector<int>(n, 0));
dp2[m-1][n-1] = 1;
for (int i = m-1; i >= 0; i--) {
for (int j = n-1; j >= 0; j--) {
if (i == m-1 && j == n-1) continue;
if (grid[i][j] == 0) continue;
int path1 = (i+1 < m) ? dp2[i+1][j] : 0;
int path2 = (j+1 < n) ? dp2[i][j+1] : 0;
dp2[i][j] = path1 + path2;
}
}
int target = dp[m-1][n-1];
for (int i = 0; i < m; i++) {
for (int j = 0; j < n; j++) {
if (i == 0 && j == 0) continue;
if (i == m-1 && j == n-1) continue;
if (grid[i][j] == 0) continue;
// Why? This is the common point that all paths
// from start to end must go through.
// If there is another path that doesn't go through this point,
// it's not possible since the total target will be different.
if (dp[i][j]*dp2[i][j] == target) {
return true;
}
}
}
return false;
}
int main() {
vector<vector<int>> grid1 = {{1,1,1},{1,0,0},{1,1,1}};
assert(isPossibleToCutPath(grid1) == true);
assert(isPossibleToCutPathDP(grid1) == true);
vector<vector<int>> grid2 = {{1,1,1},{1,0,1},{1,1,1}};
assert(isPossibleToCutPath(grid2) == false);
assert(isPossibleToCutPathDP(grid2) == false);
return 0;
}```
Last updated