Number Of Provinces
// https://leetcode.com/problems/number-of-provinces
/*
There are n cities. Some of them are connected, while some are not. If city a is connected directly with city b, and city b is connected directly with city c, then city a is connected indirectly with city c.
A province is a group of directly or indirectly connected cities and no other cities outside of the group.
You are given an n x n matrix isConnected where isConnected[i][j] = 1 if the ith city and the jth city are directly connected, and isConnected[i][j] = 0 otherwise.
Return the total number of provinces.
Ex1:
Input: isConnected = [[1,1,0],[1,1,0],[0,0,1]]
Output: 2
Ex2:
Input: isConnected = [[1,0,0],[0,1,0],[0,0,1]]
Output: 3
*/
#include <vector>
#include <cassert>
#include <unordered_set>
#include <unordered_map>
using namespace std;
// Time: O(N^2), we need n^2 time to construct graph, and also dense graph can have N^2 number of edges
// Space: O(N^2)
void dfs(int curr, unordered_map<int, vector<int>>& graph, unordered_set<int>& visited) {
for (int next : graph[curr]) {
if (visited.count(next)) continue;
visited.insert(next);
dfs(next, graph, visited);
}
}
int findCircleNum(vector<vector<int>>& isConnected) {
if (isConnected.empty() || isConnected[0].empty()) {
return 0;
}
unordered_map<int, vector<int>> graph;
int n = isConnected.size();
for (int i = 0; i < n; i++) {
for (int j = 0; j < n; j++) {
if (isConnected[i][j] == 1) {
graph[i].push_back(j);
graph[j].push_back(i);
}
}
}
int res = 0;
unordered_set<int> visited;
for (int i = 0; i < n; i++) {
if (visited.count(i)) continue;
visited.insert(i);
dfs(i, graph, visited);
res++;
}
return res;
}
// Time: O(N^2), Space: O(N)
void dfs(vector<vector<int>>& isConnected, int curr, unordered_set<int>& visited) {
for (int i = 0; i < isConnected[curr].size(); i++) {
int neighbor = i;
if (visited.count(neighbor) || isConnected[curr][neighbor] == 0) continue;
visited.insert(neighbor);
dfs(isConnected, neighbor, visited);
}
}
int findCircleNum(vector<vector<int>>& isConnected) {
int n = isConnected.size();
int res = 0;
unordered_set<int> visited;
for (int i = 0; i < n; i++) {
if (visited.count(i)) {
continue;
}
visited.insert(i);
dfs(isConnected, i, visited);
res++;
}
return res;
}
int main() {
vector<vector<int>> isConnected1 = {{1,1,0},{1,1,0},{0,0,1}};
assert(findCircleNum(isConnected1) == 2);
vector<vector<int>> isConnected2 = {{1,0,0},{0,1,0},{0,0,1}};
assert(findCircleNum(isConnected2) == 3);
return 0;
}```
Last updated